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1. Introduction

While optical solitons have made several advances
in the field of nonlinear fiber optics, there is yet a lot to
be explored [1-15]. Most of the results are visible for
polarization preserving fibers. Therefore, it is important
to focus attention to birefringent fibers and DWDM
systems. This paper studies the latter for parallel
propagation of solitons. There are several integration
schemes proposed during the past few years to study the
governing nonlinear Schrédinger's equation (NLSE) for
optical fibers and DWDM systems. Two types of
nonlinear media that are studied in this paper. They are
Kerr (cubic) law and parabolic (cubic-quintic) law. This
model was considered in the past using three integration
schemes [4]. This paper focuses on modified simple
equation method to retrieve soliton solutions to the
model. After a quick revisitation to this algorithm,
soliton extraction procedure procedure will be detailed
for this model.

2. The modified simple equation method

Suppose we have a nonlinear evolution equation in
the form
P(u,up, Uy Uy Uppy Upys ) =0, (D)
where P is a polynomial in u(x,t) and its partial
derivatives in which the highest order derivatives and
nonlinear terms are involved. In the following, we give
the main steps of this method [1, 2, 3].

Step-1: We use the transformation

u(x,t) =u(), &¢=x-—ct,

where C is a constant to be determined, to reduce Eq. (1) to
the following ODE :

Q(u,u’,u",...)

@

0, ©)

where Q is a polynomial in u (&) and its total derivatives,

!

while

Step-2: Assume Eq. (3) has the formal solution.

_ P\

@

where @, are constants to be determined, such that a,, # 0,
and Y (&) is an unknown function to be determined later.
Step-3: We determine the positive integer N in Eq. (4) by
considering the homogeneous balance between the highest
order derivatives and the nonlinear terms in Eq. (3).

Step-4: We substitute (4) into (3), then we calculate all the
necessary derivatives u’,u’’, ... of the unknown function
u (&) and we account the function 1 (§). As a result of this
substitution, we get a polynomial of Y’ (&) /Y (&)and its
derivatives. In this polynomial, we gather all the terms of the
same power of l/)_j(f),j = 0,1,2,... and its derivatives,
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and we equate with zero all the coefficients of this
polynomial. This operation yields a system of equations
which can be solved to find azand WP(<).
Consequently, we can get the exact solutions of Eq. (1) .

3. Application to DWDM system
The soliton solution retrieval procedure will now be

split into the following two subsections based on the
type of nonlinearity.

3.1 Kerr law nonlinearity

For Kerr law nonlinearity, DWDM model is:

iqt(l) + a|q>(<!<) +b|q>(<i) +
N 5
{CI ‘q(l)‘z +Zaln q™" Z}q(,) =0, ©
n=l

where, 1 < I < N. The first term in (5) on left-hand

side is the evolution term, while a; represents the
coefficient of GVD; b, represents the STD. Then, ¢ is
the coefficient of self-phase modulation (SPM) while
a,, are the coefficients of cross-phase modulation
(XPM). The independent variables are x and t that
represents the spatial and temporal variables
respectively. The dependent variable is gV (x, t) that

gives the soliton profile in every single channel.
In order to solve Eg. (5), we use the following wave
transformation

qOxt) = UD (e D ©)

where U® (&) represents the shape of the pulse in
every channel and

& =k(x —vt), @)
O (x,t) = —Kkx +w;t +6,. ®)

In Eg. (6), the function ®(x,t) is the phase
component of the soliton. Then, in Eq. (8), k;, w,;,0
and v are the frequencies, wave numbers, phase

constants and the velocity of the soliton in every single
channel. Substituting Eq. (6) into Egq. (5) and then
decomposing into real and imaginary parts yields a pair
of relations. The imaginary part gives

blwl—Zalkl
1—blKl

v =

©)

while the real part gives

k*(a —b,v)(U ('))” —(a), +ax’ —baox )U M+

6 (U0 +{ia,n (Lo )Z}U v _o.

n=l

(10)

Using the balancing principle leads to
Ub =pym
Consequently, Eq. (10) reduces to
k?(a —blv)(U ('))” —(a), +ax’ —box )U 4

(c, +ia,nj(u“>)3 -0,

n=l

1)

Balancing U®" with U(l)3 in Eq. (11) gives M = 1.
Consequently we reach

!
0@ = 5O 450 (LD, 50 2 0. @
Y (&)

Substituting Eq. (12) in Eq. (11) and then setting the
coefficients of Y~/ (&),j = 0,1,2,3, to zero, then we
obtain a set of algebraic equations involving S(()l), Sil), k,
K;, Vand w; as follows:

Y3 coeff.:

Sl(l) (1//')3 (2k2(a, —bv) + 51“)2 Lcl + ia,nn =0, (13)

n=#l

Y2 coeff:

N
3"y [kzy/” (bv-a)+s{s" [cl +Y a, }//j =0, (19

nzl

P~ coeff:
N
| —ax? +3s{)? (c, +Za,nj+
S(l) 74 nzl -0 (15)
1 ]
bxo —
+k2y" (8, —bv)

PO coeff:

s’ (_aIKIZ +8§2 (C, + ZN:aln ] +obk _1)] =0. (16)

n#l

Solving this system, we obtain
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2
ak —bxw+o
Sél):il" 12 iy

C+ Y a, an

n=l

2k*(bv—-a,)

N
¢+

n=l

N _ —
51():+

and
0 (2lapd-botoy) |,
lp - \/ kz (blv—al) l/) ’ (18)
,"blll — 2(a'l'clz_blklwl'l'(‘)l) lpl (19)

k% (bw-a))

From Egs. (18) and (19), we can deduce that

2
,2(alkl —bltclwl+a)l) .
k2(bv-ap)

k2 (by—a;)
I l l
1/) - Z(a Kz—bxw+w)kle\j g
" |3 And’ l
(20)
and
Z(G.llclz—blkl(ul-{-wl)z
1/] — kz(blv—al) e kz(blv—al) > +
Z(a K2—bK; 0+ ) 1
" [AhdAnd’ l
kz,

(21)

where k, and k, are constants of integration.
Substituting Eg. (20) and Eq. (21) into Eq. (12), we
obtain following the following exact solution to Eq. (5)

qV(xt) =

K —hro +o

N
C+ ) a,

n=l

2(a| Klz -bxjo +aoy )

+ k*(bv-a,) el wow
N
\/{Q +Za|nj(a|](|2 _bIK,a)I + @, )
n=l
2(a|K|2—b|K|(q +@)
i - \/275
kz (b|V a|) kle k*(bv-a,) n kz
z(aIKI -bxo +a)|)
Xei(—rqquugl)’
(22)
If we set
2(axi ~bro + @) 2o -dmarrer)
ot s e . e )
k'(bv-a)
we obtain:

(i) When

we have

2
’a,/c, -bx o +a an

N
C+ Y a,

n=l

\/Z(a.ch—b.'q“"*”")(k(x—vt)+§o) =

g (x,t) == h

kz(blv_a|)
Xei(—l(|x+a)|t+9| ) ,
2
ax —bxo +o
O} _
q"(x,t) =+ | ——"——— coth

C+Y

n=l

Z(a,ch —bxm, +a),) 24)
\/ KZ(bv—a,) (ko +5)

—KX+ayt+6)

xe!l )

where (23) and (24) represent dark soliton and singular
soliton solutions respecively.

(i) When

we have the following periodic singular solutions:

-k’ + Ko,

N
C+Y

n=l

2(—a,1<,2 +bx @ - a),) -
J hv_a) (k(x=vt)+&)| )

g (x,t) ==+ ~ 9 tan

Xei(—/q><+@t+9| ),

—a,K,Z +hxo —o

N
C+ Y ap,

n=l

2(—a,1c,2 +b o, —a),)
- (26)
\/ kZ(bIV_aI) (k(X Vt)+§0)

cot

qV(xt)=F

Xei(—/(|x+a)|t+6’|) ,

where v is given by Eq. (9) and w is an arbitrary constant.
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3.2 Parabolic law nonlinearity

For parabolic law nonlinearity, DWDM model

extends to:
2
}q(l) +

of)or-o

@7)

(n

2 N
Iqll) +aqux +bqul) +|:CI ‘q(l)‘ +Zaln q
n#l

ELEE R
n#l

2
® +]/In

Mm

For 1T<I<N. In (27), SPM terms are the
coefficients of ¢; and d;, while XPM coefficients are

Qs Prn and ¥y, while the remaining parameters have
the same definition as in Kerr law nonlinear medium. In
mathematical physics equations (5) and (27) fall under
the category of nonlinear evolution equation (NLEE).

In order to solve Eq. (27), we use the following
wave transformation

g t) = UD(§e ™D (28)
where
& =k(x —vt), (29)
and
d(x,t) =—Kkx +wit+6,. (30)

Substituting Eg. (28) into Eg. (27) and then
decomposing into real and imaginary parts yields a pair
of relations. The imaginary part gives

byw;—2a;k
p = A2 af (1)
l—blKl

while the real part gives
k(3 —blv)(U('))” —(@ +ax —bar U +

(U7 {3 (U U7 4 0 +

n=l

N U™ lyo 4 N U™y lyoms g
{Z'B'“( ) } {ZVm( ) }
n# n= (32)

Using the balancing principle leads to

Uob =ym

Consequently, Eq. (32) reduces to

K* (3 ~b)(U (I))” (@ +ax b Ju +
[C, +ga,nj(u (I))S +[d| "'g,(ﬂm ‘7, )j(u (I))s o
(33)

Set
1
U(l) = V(l)f (34)

so that (33) transforms to
K(a -blv)(2v<'>v<'>” (v )z)—4(a,1<,2 i+ V"

+4(cI +iam]v“>3 +4[dI +i(ﬂm 7, )]V(”“ -0,

nzl n#l

(35)

Balancing vOyO"” it V(l)4
M = 1. Consequently we reach

in Eq. (35) gives

l l ! l
v (&) = () 1( ) (lfp((;‘))) O (36)

Substituting Eq. (36) in Eq. (35) and then setting the
coefficients of Y~/ (&),j = 0,1,2,3, to zero, then we

l
obtain a set of algebraic equations involving s() (), k,

K;, Vand w; as follows:

Y ~* coeff.:

51(”2(1//')4[3k2( )+ 45 [

Y3 coeff:

n=l

+z ﬁln+7/ln jj ! (37)

45" (v )[51 (CﬁZ%jw ' (8, - bv)j

n#l (38)
N
[kz ~by) +4s [d|+Z(/3m+y,n)j]=0,
nzl
Y2 coeff.:
2 ay rom
k?(a, ~byv)s! (650 vy 450 (') - 25wy )
N
ax’ -3 [Cﬁzflm]— (39)
nzl

—451(')2 ((//')2 X | =0,
b _65él)2 [d| "’Z(ﬂm Vn )]* Q]

nzl
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P~ coeff.: and
N
2
25{s"k?(a, bV +4sPs(" k (dl + Z('Bln 7 )J (bv-a)
N 40 — n=l
—Z(a,)clz—b,)qa)l +a)|)+3sé')(cl+2amj+ (0 4 N 2
) nzl ‘//’:01 3(C| +Za|nj
45(()I)2 [dl +z(ﬂln +7In )J nl (46)
nl 2
3[c|+iam]
+ n#l
lpo coeff. V“kz{dl+Z(ﬁ|n+7|n)](blv‘a|)
N kle " + kz’
—allq2 +Sé” [C, +Za,n]+a), (bx,-D+
n= 41
4s” N | 0. @ where k, and k, are constants of integration. Substituting
sé”z[d, +Z(ﬂln+7In)J Eqg. (45) and Eq. (46) into Eq. (36), we obtain the following
nl exact solution to Eq. (27)
Mg -
Solving this system, we obtain ) .
N —B[Cl +Za,nj
3(CI +Zalnj — =t
S(()I) __ _ n=l , 4(dI +Z(ﬁm+}/m)j
n#l
4£d|+2(ﬁln+yln)] noy
nzl 3{9*2“@
> + T n#l -f
S]FI) — i 3k lsb|v_ a|) , blv al ke Akz[dl+§(ﬂln+7\n)}(b\v’a\)
4(dl +Z(13|n +}/In )j cl+zaln
n=l n#l
2( ZN (ﬁwl = )) ( ZN )2 \ 3(c|+iam}
16a;x7(d;+ +Yin) )+3(c+ @ e
(D420 2 (B 11\7;  Znst %tn) 4k2[dI +Z(ﬁm +7, )j(blv—al) Akz[d‘+Z(Mn+ym)](b.v—a.)
16(b1xl—1)(dl+2n,, (B ‘H/m)) n#l ke el +k
(42) N\ 1 2
3 C,+Za|n
and n#l (47)
n o __ 2
7./) B 163f| 6+ (Atrn) [+ 6+
Z >
3(c 43V a )2 i~ LA )
- = ITan=1%n ,L/}/ 43) 16(ty,-1) [dﬁ-z ﬁnm,,]
4k (dl+zn;tl(ﬁln +yln))(blv—a1) e n#l ,
N 2 V= If we set
3(Cl+zn=laln) ’
> N (44)
4k (dl+2n¢l(Bln"'yln))(blv_al)
3(CI + Z o, ]
From Egs. (43) and (44), it is possible to deduce Kk = n#l
N 17 N
2
4k? (d, +> (B, +y,n)j(b,v—a,) 4k [d. + 2 (But7n) j(b.V—a.)
v Nzl n=l
v = * N 2 N 2
3(C| + Z a,, j N S[Cl +§aln
n=l (45) - ) N 0
. 4k<| d, +Z:(/j'm +7in )](b,v—a| )
N nzl
3[C|+Za|nJ e y k2 = il,
+ nAl & we obtain:

N
4k2[d| +Z(ﬂ|n +1n )](b|V—a| )
kle n#l

)
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0"(x1)=

3[0I +§:a'”j

n#l

8[d, (B ym)j

nzl

N

3(0, +ZN:a,nj2

n#l

16k2 (dl +i(ﬁln +;/In )j(blv_al)
(6+%)

N vy
16a,;<.z[d|+Z(ﬂm+m)]+3[°w +Zam]
t+6

nzl nzl

-1+t tanh

i — KX+

16(byx; ‘D{dﬁi(ﬂm’f}’m)] (48)
nzl

3(C| +ia’”} -1t

i coth

8{d. +§(ﬁ.ﬂ+7.ﬂ)] [ ’ 3[CI +ZN:%]Z }

n#l

16k* [d| +i(ﬂm +7In)](blv_al)

L+&)

( [« (o))
16| ¢ +Z[ﬁn*ﬁn)]+3 C"Z”‘"J (49)
[ g

\ond

il -Kx+ S

( N
16001 6+ A7)
Xe { \ U / )

where v is given by Eqg. (31) and

{d, + 201 (B +vin)} (b —
a,)>0. (50

Equations (48) and (49) represent dark and singular
soliton solutions respectively.

4. Conclusions

This paper otained soliton solutions to DWDM
system with Kerr and parabolic law nonlinearity. The
modified simple equation method was the integration
algorithm adopted in the paper. Both dark and singular
soliton solutions are obtained with the corresponding
constraint conditions for the existence of these solitons.
The drawback of this scheme is that no bright soliton

solutions are obtained for any of the two nonlinearities.
Nevertheless, this scheme stands on astrong footing to study
future projects such as dispersive solitons, metamaterials,
metasurfaces and others. The results of those research will
be disseminated elsewhere.
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